中文字幕在线一区二区,亚洲一级毛片免费观看,九九热国产,毛片aaa

您的位置:健客網(wǎng) > 新聞?lì)l道 > 醫(yī)藥資訊 > 醫(yī)藥會(huì)議 > 新藥研發(fā)的AI時(shí)代:人工智能帶來(lái)的真正沖擊是什么?

新藥研發(fā)的AI時(shí)代:人工智能帶來(lái)的真正沖擊是什么?

2017-12-06 來(lái)源:貝殼社  標(biāo)簽: 掌上醫(yī)生 喝茶減肥 一天瘦一斤 安全減肥 cps聯(lián)盟 美容護(hù)膚
摘要:GuidoLanza博士:Numerate的第一個(gè)最明顯的區(qū)別就是我們成立很久了。在沒(méi)有人關(guān)注AI的時(shí)候,我們已經(jīng)建立了一家AI技術(shù)驅(qū)動(dòng)的公司。

  Numerate的總裁兼首席執(zhí)行官GuidoLanza博士曾擔(dān)任Pharmix公司聯(lián)合創(chuàng)始人兼首席技術(shù)官,2006年入選《BusinessWeek》“30歲以下最佳青年科技創(chuàng)業(yè)家”。

  藥明康德:您如何描述AI領(lǐng)域的公司境況?它們大多是初創(chuàng)企業(yè),還是Google和Intel這樣的大數(shù)據(jù)公司?

  GuidoLanza博士:這個(gè)領(lǐng)域的公司分布很平均,既有Numerate,InsilicoMedicine,BergHealth和NuMedii這樣的創(chuàng)業(yè)公司,也有GE和IBM這樣的大公司。值得注意的是,各公司之間的開(kāi)發(fā)能力重疊性相對(duì)較小。這個(gè)行業(yè)數(shù)據(jù)過(guò)剩,算法不足已經(jīng)持續(xù)了很長(zhǎng)時(shí)間,AI在可預(yù)見(jiàn)的將來(lái)會(huì)面臨很多問(wèn)題。

  106家改變醫(yī)療行業(yè)的AI公司,紅色方框內(nèi)是從事新藥開(kāi)發(fā)的AI公司(圖片來(lái)源:CBInsights)

  藥明康德:您的公司與其他利用AI進(jìn)行藥物研發(fā)的公司有什么不同?你們?cè)趺磻?yīng)用AI?

  GuidoLanza博士:Numerate的第一個(gè)最明顯的區(qū)別就是我們成立很久了。在沒(méi)有人關(guān)注AI的時(shí)候,我們已經(jīng)建立了一家AI技術(shù)驅(qū)動(dòng)的公司。我們的初創(chuàng)團(tuán)隊(duì)里有計(jì)算機(jī)科學(xué)家和新藥研發(fā)人員,他們?cè)谂R床和市場(chǎng)上都有化合物。這迫使我們?cè)诤艽蟪潭壬想[藏了人工智能的部分,并以更為傳統(tǒng)的平臺(tái)公司方式開(kāi)展業(yè)務(wù),圍繞以服務(wù)和研發(fā)合作為重點(diǎn)的合作伙伴關(guān)系。這個(gè)商業(yè)模式使我們能夠在10年的時(shí)間里投資了近5000萬(wàn)美元建立了我們的技術(shù)平臺(tái),其中大部分是非稀釋性的資金。

  從科學(xué)的角度來(lái)看,我們的差異化在于轉(zhuǎn)化能力。首先,我們能夠使用非常小的數(shù)據(jù)集來(lái)解決新興的生物學(xué)問(wèn)題,即使這些數(shù)據(jù)不適合用深入學(xué)習(xí)的方法進(jìn)行研究。二,我們的建模是基于3D配體信息,不需要化合物結(jié)構(gòu)信息。這些能力使我們的機(jī)器學(xué)習(xí)算法能夠解決表型驅(qū)動(dòng)的藥物研發(fā)難題,這種研發(fā)通常是低通量,高內(nèi)涵的生物學(xué)問(wèn)題。

  另一個(gè)轉(zhuǎn)化能力就是我們的ADME和毒性預(yù)測(cè)功能。在這方面,我們投資了1000多萬(wàn)美元,其中包括與美國(guó)國(guó)防部防威脅減少局(DTRA)的大型合同,以建立和驗(yàn)證一套系統(tǒng),可能將先導(dǎo)物快速轉(zhuǎn)化為臨床候選藥物。今天,我們與制藥公司的許多合作都基于這一能力,其獨(dú)特之處在于能夠從過(guò)去的所有研發(fā)項(xiàng)目中學(xué)習(xí),為未來(lái)的每一個(gè)化學(xué)設(shè)計(jì)和候選藥物選擇提供決策。

  藥明康德:AI將如何改變藥物研發(fā)和臨床研究?

  GuidoLanza博士:十多年來(lái),醫(yī)藥行業(yè)一直在努力通過(guò)各種計(jì)算方法來(lái)解決藥物研發(fā)的成本和時(shí)間問(wèn)題。顯然,跟使用人力,以實(shí)驗(yàn)室為中心的傳統(tǒng)藥物研發(fā)方法相比,這也是AI的一個(gè)好處。然而,專(zhuān)注于計(jì)算方面會(huì)錯(cuò)過(guò)AI影響醫(yī)藥行業(yè)面臨的最大挑戰(zhàn)——增加基礎(chǔ)生物學(xué)發(fā)現(xiàn)到患者應(yīng)用的成果轉(zhuǎn)化率。

  在最早階段,AI面臨的關(guān)鍵挑戰(zhàn)是從相對(duì)較小的數(shù)據(jù)集中提取大量信息。例如,我們的平臺(tái)使我們能夠非??焖俚貙W(xué)術(shù)研究的的實(shí)驗(yàn)(特點(diǎn)是數(shù)據(jù)很少,低通量,高內(nèi)涵)轉(zhuǎn)化為完整的先導(dǎo)物優(yōu)化階段的項(xiàng)目。我們與Gladstone研究所合作開(kāi)展了這項(xiàng)工作,現(xiàn)在開(kāi)始與加州大學(xué)洛杉磯分校(UCLA)和梅奧診所(MayoClinic)進(jìn)行了幾個(gè)項(xiàng)目。

  AI面臨的第二個(gè)挑戰(zhàn)是整合單個(gè)項(xiàng)目產(chǎn)生的大量數(shù)據(jù)(例如組學(xué)omics數(shù)據(jù))。在這方面,像BergHealth這樣的公司能夠集成大量數(shù)據(jù)來(lái)推動(dòng)程序具有更多的可預(yù)測(cè)性。還有組合應(yīng)用NLP(神經(jīng)語(yǔ)言程序設(shè)計(jì)),以利用整體的生物學(xué)知識(shí)來(lái)做決策,從而能夠解釋結(jié)果,發(fā)現(xiàn)不可見(jiàn)的關(guān)聯(lián)——例如沃森機(jī)器人和Benevolent(譯者注:一家領(lǐng)先的英國(guó)人工智能公司,關(guān)注健康和藥物開(kāi)發(fā))。

  IBM的沃森已在真實(shí)世界中帶來(lái)的很大的影響(圖片來(lái)源:IBM)

  然而,AI可以產(chǎn)生最大影響的領(lǐng)域是真正的學(xué)習(xí)環(huán)路,這個(gè)概念首次引入業(yè)界。所有的決策都可以從以前所有成功和失敗的經(jīng)驗(yàn)推倒出來(lái),這個(gè)首次提出的想法另令人印象深刻。我們一直在建立AI算法來(lái)預(yù)測(cè)化合物的PK和毒性特征,但現(xiàn)在,很多公司首次愿意分享他們的實(shí)驗(yàn)數(shù)據(jù),以便我們能利用這些數(shù)據(jù)推出結(jié)論。在未來(lái)六個(gè)月內(nèi),我們將與一到兩個(gè)大型制藥公司合作,未來(lái)將會(huì)有更多的合作出現(xiàn)。

  藥明康德:AI最終會(huì)成為生物技術(shù)和制藥研發(fā)的基準(zhǔn)嗎?如果是的話,還有多久實(shí)現(xiàn)?

  GuidoLanza博士:在未來(lái)的三到五年內(nèi),AI算法會(huì)被應(yīng)用到整個(gè)行業(yè)。同時(shí),根據(jù)AI提供的方法和價(jià)值,各方的接受程度會(huì)有所不同。

  針對(duì)臨床前應(yīng)用,基于NLP的方法仍然需要重新調(diào)整定位,但用來(lái)解釋結(jié)果將變得更常見(jiàn)。像我們公司用的、轉(zhuǎn)化基于表型信號(hào)的新興生物學(xué)的方法,會(huì)被許多生物科技公司用來(lái)啟動(dòng)項(xiàng)目或者變得更加普遍,從而使制藥公司放棄今天傳統(tǒng)的藥物高通量篩選活動(dòng)。同樣,基于結(jié)構(gòu)的,模擬驅(qū)動(dòng)的AI將繼續(xù)實(shí)現(xiàn)越來(lái)越多的目標(biāo)。

  大型制藥公司都在探索人工智能(AI)改善藥物發(fā)現(xiàn)工作的潛力(圖片來(lái)源:pmlive)

  更重要的是,在未來(lái)的三到五年中,藥物研發(fā)將從孤立和匿名的成功轉(zhuǎn)向借助人工智能利用綜合知識(shí)的方式,無(wú)論是在公司內(nèi)部研發(fā)或是在行業(yè)廣泛應(yīng)用。這樣至少能避免一些(如果不是最多的)過(guò)去的研發(fā)錯(cuò)誤。如果AI被證明比當(dāng)前任何方法(PK,ADME,動(dòng)物毒素,臨床安全性等)更好,那么以完全傳統(tǒng)的方式進(jìn)行藥物研發(fā)將變成一個(gè)明顯的競(jìng)爭(zhēng)劣勢(shì)。這意味著在三到五年內(nèi),沒(méi)有經(jīng)過(guò)各種AI驅(qū)動(dòng)模型(包括預(yù)測(cè)的動(dòng)物毒性,預(yù)測(cè)性人體毒性,預(yù)測(cè)性PK指數(shù)等)研究的候選藥物將沒(méi)法進(jìn)入臨床試驗(yàn)。

  藥明康德:在制藥和生物技術(shù)行業(yè)藥物開(kāi)發(fā)中使用AI的挑戰(zhàn)或障礙是什么?

  GuidoLanza博士:當(dāng)前的挑戰(zhàn)主要在于文化。首先,AI本質(zhì)上意味著不可以解釋?zhuān)歉嗟赜米?ldquo;黑匣子”。我經(jīng)常聽(tīng)到,為了使這些預(yù)測(cè)可信,科學(xué)家們想知道AI是如何做到的。我認(rèn)為這是思考AI的錯(cuò)誤方式。這些算法可以看到的數(shù)據(jù)中的信號(hào)對(duì)于人類(lèi)而言太窄或太寬。因此,如果我們要求人工智能產(chǎn)生人為可解釋的結(jié)果,就可能限制AI去解決最有趣的問(wèn)題。

  這方面一個(gè)很好的例子是從原始基因組序列預(yù)測(cè)人臉特征。HumanLongevity公司表明,即使他們沒(méi)有潛在的發(fā)育生物學(xué)模型,這也是可行的。要求預(yù)測(cè)結(jié)果“可理解”可能會(huì)限制技術(shù)去尋找鼻子形狀或長(zhǎng)度這樣簡(jiǎn)單的遺傳標(biāo)記,而這幾乎沒(méi)有價(jià)值。

  AI預(yù)測(cè)技術(shù)能夠相當(dāng)準(zhǔn)確地“預(yù)測(cè)”基于基因組的個(gè)體面部特征(圖片來(lái)源:HumanLongevity)

  另一個(gè)主要的文化挑戰(zhàn)關(guān)于數(shù)據(jù)。制藥公司需要進(jìn)一步公開(kāi)數(shù)據(jù)。這并不是說(shuō)要分享他們目前正在開(kāi)發(fā)的最熱門(mén)靶標(biāo)的最新數(shù)據(jù),而是指共享可用于預(yù)測(cè)未來(lái)藥物開(kāi)發(fā)失敗的幾百萬(wàn)個(gè)數(shù)據(jù)點(diǎn)。作為一家專(zhuān)注于預(yù)測(cè)性ADME和毒性研究超過(guò)10年的公司,我們意識(shí)到這是一個(gè)很大的問(wèn)題,但是像GSK與ATOM這樣的公司正在引導(dǎo)和推動(dòng)新的算法和方法的創(chuàng)建。

  藥明康德:什么樣的合作關(guān)系對(duì)您公司的發(fā)展很重要?

  GuidoLanza博士:我們的客戶(hù)合作關(guān)系分為三個(gè)方面。首先,我們與大型制藥公司合作建立購(gòu)買(mǎi)產(chǎn)品線形式的合作。在這方面,我們的合作伙伴,如武田(Takeda),會(huì)預(yù)先協(xié)商了由我們的AI平臺(tái)產(chǎn)生的許可資產(chǎn)。此外,我們與大型制藥公司更多是圍繞數(shù)據(jù)而不是管線開(kāi)展合作。在這些合作中,制藥公司共享數(shù)據(jù),通常是PK/ADME或安全性數(shù)據(jù),我們提供AI平臺(tái),這種模式使雙方都受益。最后一種類(lèi)型是我們與學(xué)術(shù)機(jī)構(gòu)的合作,我們希望延續(xù)有成功合作經(jīng)驗(yàn)的合作伙伴,如Gladstone研究所、UCLA和Mayo診所進(jìn)行合作,以豐富我們自己的內(nèi)部研發(fā)管線。這是獲得最有希望的新興生物學(xué)進(jìn)步的一種方法,并使用我們的AI平臺(tái)將項(xiàng)目轉(zhuǎn)化為可合作的資產(chǎn)。

  生物制藥行業(yè)越來(lái)越重視與AI初創(chuàng)公司合作推動(dòng)藥物發(fā)現(xiàn)(圖片來(lái)源:biopharmatrend)

  另一種關(guān)鍵的合作伙伴關(guān)系是通過(guò)高素質(zhì)的CRO聯(lián)盟。我相信,在可預(yù)見(jiàn)的將來(lái),人們不會(huì)(也不應(yīng)該)接受AI的預(yù)測(cè)為真理。尤其是在這些方法得到改進(jìn)之前,AI預(yù)測(cè)之后能夠減少實(shí)驗(yàn)和驗(yàn)證,才會(huì)使我們(和其他AI公司)實(shí)現(xiàn)價(jià)值。顯然,我們需要一個(gè)像藥明康德這樣一個(gè)在實(shí)驗(yàn)室化學(xué)/生物學(xué)領(lǐng)域的合作伙伴,另外還可能會(huì)與臨床CRO形成合作關(guān)系。(實(shí)驗(yàn))證據(jù)的責(zé)任仍然在AI公司,未來(lái)也將是這樣。

  藥明康德:您公司的商業(yè)模式與傳統(tǒng)的生物技術(shù)和制藥行業(yè)的創(chuàng)業(yè)公司有何不同?

  GuidoLanza博士:傳統(tǒng)的生物技術(shù)和制藥創(chuàng)業(yè)公司一般側(cè)重于少數(shù)靶標(biāo)或單一治療領(lǐng)域。我們更多地關(guān)注平臺(tái),以及如何更廣泛地改變行業(yè)。我們的業(yè)務(wù)模式著重于捕捉產(chǎn)出的價(jià)值——我們可以產(chǎn)生的化合物資產(chǎn)。我們還圍繞平臺(tái)進(jìn)行更多的關(guān)注數(shù)據(jù)/驗(yàn)證而較少關(guān)注收入的合作類(lèi)型,但是我們的收入來(lái)自于建立后期可以獲得轉(zhuǎn)讓收益的產(chǎn)品管線。我們一直在建立和擴(kuò)展一系列管線,涵蓋了眾多治療領(lǐng)域(CNS,心血管代謝,炎癥),它們來(lái)源于我們內(nèi)部研發(fā),學(xué)術(shù)合作,購(gòu)買(mǎi)或賞金獵人交易。

  藥明康德:運(yùn)營(yíng)一家AI初創(chuàng)公司,您有什么經(jīng)驗(yàn)跟我們分享嗎?

  GuidoLanza博士:作為一個(gè)剛剛創(chuàng)業(yè)的企業(yè)家,很容易認(rèn)為解決技術(shù)障礙是最難的部分,比如在我們這個(gè)領(lǐng)域如何生成算法和平臺(tái)。我們很快就認(rèn)識(shí)到,數(shù)據(jù)科學(xué)和商業(yè)問(wèn)題同樣不容易。首先,你必須真正了解你的算法正在應(yīng)用的數(shù)據(jù)。我們花費(fèi)了數(shù)十年的時(shí)間來(lái)解決計(jì)算化學(xué)方面稱(chēng)為“訓(xùn)練/測(cè)試悖論”的問(wèn)題,就是在實(shí)驗(yàn)室應(yīng)用前景很好的模型在實(shí)際中表現(xiàn)不佳,盡管它們的回顧性很好。為了解決這些問(wèn)題,了解數(shù)據(jù)、解決生物學(xué)(及其帶來(lái)的噪音)的混亂以及化學(xué)的挑戰(zhàn)(以及它們帶來(lái)的偏見(jiàn))至關(guān)重要。

  商業(yè)方面,關(guān)鍵在于確保產(chǎn)品從科學(xué)和商業(yè)的角度來(lái)看真正具有價(jià)值。畢竟,向已知藥物中加入甲基可能會(huì)產(chǎn)生另一種活性化合物,但其價(jià)值幾乎為零。為了做到這一點(diǎn),至關(guān)重要的是要有一個(gè)新藥研發(fā)團(tuán)隊(duì),真正了解對(duì)我們最終客戶(hù)——制藥公司而言,什么東西才有價(jià)值。

  藥明康德:AI與以前的計(jì)算生物學(xué)熱潮有什么不同?

  GuidoLanza博士:廣泛來(lái)說(shuō),AI廣泛影響了很多行業(yè)。計(jì)算機(jī)和數(shù)據(jù)存儲(chǔ)終于足夠便宜,以至于我們可以用正確的AI算法解決藥物研發(fā)的問(wèn)題。這使得大型企業(yè)(IBM/GE)能夠開(kāi)始影響醫(yī)藥行業(yè),對(duì)目前封閉在制藥公司內(nèi)部數(shù)據(jù)庫(kù)中的數(shù)據(jù)做點(diǎn)什么。數(shù)十年來(lái),醫(yī)藥行業(yè)一直努力解決研發(fā)生產(chǎn)率低的問(wèn)題。過(guò)去十多年來(lái),人們開(kāi)始建立虛擬藥物發(fā)現(xiàn)初創(chuàng)公司。我們發(fā)展了Numerate的業(yè)務(wù),專(zhuān)注于產(chǎn)品(化學(xué)和程序),卻把AI放在幕后,也很少談及我們的方法。如今,很高興我們的方法有機(jī)會(huì)對(duì)大型和小型公司更加開(kāi)放。事實(shí)上,這個(gè)領(lǐng)域的初創(chuàng)企業(yè)正在蓬勃發(fā)展,部分原因是公共的數(shù)據(jù)量不斷增加,以及制藥公司越來(lái)越愿意分享他們的數(shù)據(jù)。

  另外,競(jìng)爭(zhēng)環(huán)境也與10到15年前的計(jì)算生物學(xué)熱潮不一樣。我認(rèn)為AI公司的創(chuàng)始人正在意識(shí)到,我們?cè)诖蠖鄶?shù)情況下并不是在相互競(jìng)爭(zhēng)。首先,沒(méi)有人擁有向制藥銷(xiāo)售打包軟件/座位的模式。相反,我們專(zhuān)注于自己的產(chǎn)品管線或研發(fā)合作,這些合作不太可能直接相互競(jìng)爭(zhēng)。因此,真正意義上的社區(qū)正在形成,從分享聯(lián)系,提供參考和合作組織會(huì)議,這在五年前是聞所未聞的。

看本篇文章的人在健客購(gòu)買(mǎi)了以下產(chǎn)品 更多>
有健康問(wèn)題?醫(yī)生在線免費(fèi)幫您解答!去提問(wèn)>>
健客微信
健客藥房